numfmt/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
//! Fast and friendly number formatting.
//!
//! Provides a [`Formatter`] to format decimal numbers with various methods. Formatting is
//! performance focused, it is generally faster than `std` with more features. There is also a
//! [string parser](#parsing) which can use a string to define a [`Formatter`] following a specific
//! grammar.
//!
//! # Procedure
//! Formatting is done through the [`Formatter::fmt`] which follows the procedure:
//! 1. Scale the number with the defined [`Scales`],
//! 2. Check if _scaled number_ is above or below the [scientific notation
//! cutoffs](#scientific-notation),
//! 3. Add defined thousands separator,
//! 4. Stop at defined [`Precision`],
//! 5. Applies valid prefix, suffix, and unit decorations.
//!
//! # Usage
//! ## Default use
//! [`Default::default`] provides a general use default formatter with the following properties:
//! - [`Scales::short`] scaling,
//! - `,` thousands separator,
//! - 3 decimal places
//!
//! ```rust
//! # use numfmt::*;
//! let mut f = Formatter::default();
//! assert_eq!(f.fmt(0.0), "0");
//! assert_eq!(f.fmt(12345.6789), "12.345 K");
//! assert_eq!(f.fmt(0.00012345), "1.234e-4");
//! assert_eq!(f.fmt(123456e22), "1,234.559 Y");
//! ```
//!
//! ## Custom use
//! The [`Formatter`] has many different options to customise how the number should be formatted.
//! The example below shows how a currency format would be developed:
//! ```rust
//! # use numfmt::*;
//! let mut f = Formatter::new() // start with blank representation
//! .separator(',').unwrap()
//! .prefix("AU$").unwrap()
//! .precision(Precision::Decimals(2));
//!
//! assert_eq!(f.fmt(0.52), "AU$0.52");
//! assert_eq!(f.fmt(1234.567), "AU$1,234.56");
//! assert_eq!(f.fmt(12345678900.0), "AU$12,345,678,900.0");
//! ```
//!
//! # Scientific Notation
//! Scientific notation kicks in when the scaled number is greater than 12 integer digits
//! (123,456,789,000) or less than 3 leading zeros (0.0001234). The number _always_ has a leading
//! integer digit and has a default of **7 significant figures**.
//!
//! # Precision
//! Precision, either with number of decimals or significant figures can be specified with
//! [`Precision`].
//! ```rust
//! # use numfmt::*;
//! let mut f = Formatter::new();
//! assert_eq!(f.fmt(1234.56789), "1234.56789");
//!
//! f = f.precision(Precision::Decimals(2));
//! assert_eq!(f.fmt(1234.56789), "1234.56");
//!
//! f = f.precision(Precision::Significance(5));
//! assert_eq!(f.fmt(1234.56789), "1234.5");
//! ```
//!
//! # Performance
//! Formatting is generally faster than `std`'s `f64::to_string` implementation. When constructing
//! a [`Formatter`] there is an allocation for the buffer, and an allocation for any scales.
//! Reusing a [`Formatter`] is recommended to avoid unnecessary allocations. The `cached` row shows
//! the better performance reusing a formatter.
//!
//! | Time (ns) | 0.0 | 0.1234 | 2.718281828459045 | 1.797693148623157e307 |
//! | ---------------- | --- | ------ | ----------------- | --------------------- |
//! | numfmt - default | 35 | 115 | 153 | 195 |
//! | numfmt - cached | 2 | 75 | 89 | 126 |
//! | std | 35 | 96 | 105 | 214 |
//!
//! # Example - File size formatter
//! Using a combination of a scale, suffix, and precision, a file size printer can be constructed:
//! ```rust
//! # use numfmt::*;
//! let mut f = Formatter::new()
//! .scales(Scales::binary())
//! .precision(Precision::Significance(3))
//! .suffix("B").unwrap();
//!
//! assert_eq!(f.fmt(123_f64), "123 B");
//! assert_eq!(f.fmt(1234_f64), "1.20 kiB");
//! assert_eq!(f.fmt(1_048_576_f64), "1.0 MiB");
//! assert_eq!(f.fmt(123456789876543_f64), "112 TiB");
//! ```
//!
//! # Parsing
//! A grammar is defined that can parse into a [`Formatter`]. This string representation can be
//! used as a user input for formatting numbers. The grammar is defined by a _prefix_, the number
//! format enclosed in brackets, and then the _suffix_.
//! ```text
//! prefix[[.#|,#|~#|.*|,*][%|s|b|n][/<char>]]suffix
//! ^----^ ^--------------^^-------^^-------^ ^----^
//! prefix precision scale separator suffix
//! ```
//! > Each component is optional, including the number format. All formats are applied to the
//! _default_ [`Formatter`] so an empty format results in the default _formatter_.
//!
//! ## Prefix and Suffix
//! The prefix and suffix are bound to the supported lengths, and can have any character in them.
//! To use `[]` characters, a double bracket must be used.
//!
//! ### Example
//! ```rust
//! # use numfmt::*;
//! let mut f: Formatter;
//! f = "".parse().unwrap();
//! assert_eq!(f.fmt(1.234), "1.234");
//!
//! f = "prefix ".parse().unwrap();
//! assert_eq!(f.fmt(1.234), "prefix 1.234");
//!
//! f = "[] suffix".parse().unwrap();
//! assert_eq!(f.fmt(1.234), "1.234 suffix");
//!
//! f = "[[prefix [] suffix]]".parse().unwrap();
//! assert_eq!(f.fmt(1.234), "[prefix 1.234 suffix]");
//! ```
//!
//! ## Precision
//! Precision is defined using a `.`/`,` for decimals, or a `~` for significant figures, followed by
//! a number. A maximum of 255 is supported. There is a special case: `.*`/`,*` which removes any
//! default precision and uses [`Precision::Unspecified`].
//! Note that usage of `,` signals to use periods as the separator and comma as the
//! decimal marker. To use a comma with signficant figures, use a period separator.
//!
//! ### Example
//! ```rust
//! # use numfmt::*;
//! let mut f: Formatter;
//! f = "[.2]".parse().unwrap(); // use two decimal places
//! assert_eq!(f.fmt(1.2345), "1.23");
//!
//! f = "[,2]".parse().unwrap(); // use two decimal places with comma
//! assert_eq!(f.fmt(1.2345), "1,23");
//!
//! f = "[.0]".parse().unwrap(); // use zero decimal places
//! assert_eq!(f.fmt(10.234), "10");
//!
//! f = "[.*]".parse().unwrap(); // arbitrary precision
//! assert_eq!(f.fmt(1.234), "1.234");
//! assert_eq!(f.fmt(12.2), "12.2");
//!
//! f = "[,*]".parse().unwrap(); // arbitrary precision with comma
//! assert_eq!(f.fmt(1.234), "1,234");
//!
//! f = "[~3]".parse().unwrap(); // 3 significant figures
//! assert_eq!(f.fmt(1.234), "1.23");
//! assert_eq!(f.fmt(10.234), "10.2");
//! f = "[~3/.]".parse().unwrap(); // 3 significant figures with comma
//! assert_eq!(f.fmt(1.234), "1,23");
//! ```
//!
//! ## Scale
//! Scale uses a character to denote what scaling should be used. By default the SI scaling is
//! used. The following characters are supported:
//! - `s` for SI scaling ([`Scales::short`]),
//! - `%` for percentage scaling ([`Formatter::percentage`]),
//! - `m` for metric scaling ([`Scales::metric`]),
//! - `b` for binary scaling ([`Scales::binary`]),
//! - `n` for no scaling ([`Scales::none`])
//!
//! ### Example
//! ```rust
//! # use numfmt::*;
//! let mut f: Formatter;
//! f = "".parse().unwrap(); // default si scaling used
//! assert_eq!(f.fmt(12345.0), "12.345 K");
//!
//! f = "[n]".parse().unwrap(); // turn off scaling
//! assert_eq!(f.fmt(12345.0), "12,345.0");
//!
//! f = "[%.2]".parse().unwrap(); // format as percentages with 2 decimal places
//! assert_eq!(f.fmt(0.234), "23.40%");
//!
//! f = "[b]".parse().unwrap(); // use a binary scaler
//! assert_eq!(f.fmt(3.14 * 1024.0 * 1024.0), "3.14 Mi");
//! ```
//!
//! ## Separator
//! A separator character can be specified by using a forward slash `/` followed by a character.
//! The parser uses the _next character_, unless that character is `]` in which case the
//! separator is set to `None`. The default separator is a comma.
//! If a period separator `.` is specified, we take this as a signal to use a comma `,` as
//! the decimal signifier.
//!
//! ### Example
//! ```rust
//! # use numfmt::*;
//! let mut f: Formatter;
//! f = "[n]".parse().unwrap(); // turn off scaling to see separator
//! assert_eq!(f.fmt(12345.0), "12,345.0");
//!
//! f = "[n/]".parse().unwrap(); // use no separator
//! assert_eq!(f.fmt(12345.0), "12345.0");
//!
//! f = "[n/_]".parse().unwrap(); // use a underscroll
//! assert_eq!(f.fmt(12345.0), "12_345.0");
//!
//! f = "[n/ ]".parse().unwrap(); // use a space
//! assert_eq!(f.fmt(12345.0), "12 345.0");
//!
//! f = "[n/.]".parse().unwrap(); // use period and commas
//! assert_eq!(f.fmt(12345.0), "12.345,0");
//! ```
//!
//! ## Composing formats
//! There have been examples of composing formats already. The `prefix[num]suffix` order must be
//! adhered to, but the ordering within the number format is arbitrary. It is recommended to keep it
//! consistent with _precision, scaling, separator_ as this assists with readability and lowers the
//! risk of malformed formats (which will error on the parsing phase).
//!
//! ### Various composed examples
//! ```rust
//! # use numfmt::*;
//! let mut f: Formatter;
//!
//! // Percentages to two decimal places
//! f = "[.2%]".parse().unwrap();
//! assert_eq!(f.fmt(0.012345), "1.23%");
//!
//! // Currency to zero decimal places
//! // notice the `n` for no scaling
//! f = "$[.0n] USD".parse().unwrap();
//! assert_eq!(f.fmt(123_456_789.12345), "$123,456,789 USD");
//!
//! // Formatting file sizes
//! f = "[~3b]B".parse().unwrap();
//! assert_eq!(f.fmt(123_456_789.0), "117 MiB");
//!
//! // Units to 1 decimal place
//! f = "[.1n] m/s".parse().unwrap();
//! assert_eq!(f.fmt(12345.68), "12,345.6 m/s");
//!
//! // Using custom separator and period for decimals
//! f = "[,1n/_]".parse().unwrap();
//! assert_eq!(f.fmt(12345.68), "12_345,6");
//! ```
#![warn(missing_docs)]
use std::{cmp::*, error, fmt, hash::*};
use Precision::*;
mod numeric;
mod parse;
pub use numeric::Numeric;
pub use parse::ParseError;
/// Result type for [`Formatter`] methods.
pub type Result = std::result::Result<Formatter, Error>;
const SN_BIG_CUTOFF: f64 = 1_000_000_000_000f64;
const SN_SML_CUTOFF: f64 = 0.001;
const SN_PREC: Precision = Significance(7);
const PREFIX_LIM: usize = 12;
const UNITS_LIM: usize = 12;
const SUFFIX_LIM: usize = 12;
const FLOATBUF_LEN: usize = 22;
const BUF_LEN: usize = PREFIX_LIM + FLOATBUF_LEN + 3 + UNITS_LIM + SUFFIX_LIM;
// ########### FORMATTER #################################################################
/// The number formatter configurations. See the [module documentation for use][link].
///
/// [`Formatter`] has a `FromStr` implementation that can parse a string into a formatter using a
/// specific grammar. Please [consult the parsing section in the module
/// documentation](./index.html#parsing).
///
/// [link]: crate
#[derive(Debug, Clone)]
pub struct Formatter {
/// The formatter uses a buffer to avoid allocating when constructing the formatted string.
/// The formatting algorithm assumes the buffer size is large enough to accommodate writes into
/// it, care must be taken when altering what gets written to buffer. Ensure buffer is of
/// adequate size.
///
/// The buffer is sized for:
/// - 12 bytes: prefix
/// - 22 bytes: float repr <https://github.com/dtolnay/dtoa/issues/22>
/// - 3 bytes: 3x thou separator
/// - 12 bytes: units
/// - 12 bytes: suffix
strbuf: Vec<u8>,
/// Optional thousands separator character (restricted to a single byte)
thou_sep: Option<u8>,
/// comma separation
comma: bool,
/// If prefixed with something, this is the start of the _number_ portion.
start: usize,
/// Precision limits to formatting.
precision: Precision,
/// The auto scales.
scales: Scales,
/// Optional suffix.
suffix: [u8; SUFFIX_LIM],
suffix_len: usize,
/// Direct conversion.
convert: fn(f64) -> f64,
}
impl Formatter {
/// Construct a new formatter.
///
/// No scaling is set, so this is only does a single allocation for the buffer.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::new();
/// assert_eq!(f.fmt(12345.6789), "12345.6789");
/// ```
pub fn new() -> Self {
Self {
strbuf: vec![0; BUF_LEN],
thou_sep: None,
start: 0,
precision: Precision::Unspecified,
scales: Scales::none(),
suffix: [0; SUFFIX_LIM],
suffix_len: 0,
convert: |x| x,
comma: false,
}
}
/// Create a formatter that formats numbers as a currency.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::currency("$").unwrap();
/// assert_eq!(f.fmt(12345.6789), "$12,345.67");
/// assert_eq!(f.fmt(1234_f64), "$1,234.0");
/// ```
pub fn currency(prefix: &str) -> Result {
Self::new()
.separator(',')
.unwrap()
.precision(Decimals(2))
.prefix(prefix)
}
/// Create a formatter that formats numbers as a percentage.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::percentage();
/// assert_eq!(f.fmt(0.678912), "67.8912%");
/// assert_eq!(f.fmt(1.23), "123.0%");
/// assert_eq!(f.fmt(1.2), "120.0%");
///
/// f = f.precision(Precision::Decimals(2));
/// assert_eq!(f.fmt(0.01234), "1.23%");
/// ```
pub fn percentage() -> Self {
Self::new().convert(|x| x * 100.0).suffix("%").unwrap()
}
/// Set the value converter.
///
/// Use a converter to transform the input number into another number. This is done before all
/// steps and the number follows the same procedure as normal. A good example of a use of a
/// converter is to make a percentage number by _always_ multiplying by 100.
pub fn convert(mut self, f: fn(f64) -> f64) -> Self {
self.convert = f;
self
}
/// Set the precision.
pub fn precision(mut self, precision: Precision) -> Self {
self.precision = precision;
self
}
/// Set the scaling.
pub fn scales(mut self, scales: Scales) -> Self {
self.scales = scales;
self
}
/// Set the scaling via [`Scales::new`].
pub fn build_scales(mut self, base: u16, units: Vec<&'static str>) -> Result {
let scales = Scales::new(base, units)?;
self.scales = scales;
Ok(self)
}
/// Set the thousands separator.
///
/// If separator is not a single byte, an error is returned.
/// If the separator is a period `.`, this signals to use a comma for the decimal marker.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::new().separator(',').unwrap(); // use a comma
/// assert_eq!(f.fmt(12345.67), "12,345.67");
///
/// f = f.separator(' ').unwrap(); // use a space
/// assert_eq!(f.fmt(12345.67), "12 345.67");
///
/// f = f.separator(None).unwrap(); // no separator
/// assert_eq!(f.fmt(12345.67), "12345.67");
///
/// f = f.separator('.').unwrap(); // use a period separator and comma for decimal
/// assert_eq!(f.fmt(12345.67), "12.345,67");
/// ```
pub fn separator<S: Into<Option<char>>>(mut self, sep: S) -> Result {
if let Some(sep) = sep.into() {
if sep.len_utf8() != 1 {
Err(Error::InvalidSeparator(sep))
} else {
if sep == '.' {
self.comma = true;
}
let mut buf = [0];
sep.encode_utf8(&mut buf);
self.thou_sep = Some(buf[0]);
Ok(self)
}
} else {
self.thou_sep = None;
Ok(self)
}
}
/// Set the comma option.
///
/// If set to true it will use a comma instead of a period.
/// If a comma is the separator, a period will be used instead.
///
/// # Example
///
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::new();
/// assert_eq!(f.fmt(12345.67), "12345.67");
/// f = f.comma(true);
/// assert_eq!(f.fmt(12345.67), "12345,67");
///
/// f = f.separator('.').unwrap();
/// assert_eq!(f.fmt(12345.67), "12.345,67");
/// ```
pub fn comma(mut self, comma: bool) -> Self {
self.comma = comma;
if comma && self.thou_sep == Some(b',') {
self.thou_sep = Some(b'.');
}
self
}
/// Sets the prefix.
///
/// If the prefix is longer than the supported length, an error is returned.
pub fn prefix(mut self, prefix: &str) -> Result {
if prefix.len() > PREFIX_LIM {
Err(Error::InvalidPrefix(prefix.to_string()))
} else {
let n = prefix.len();
self.strbuf[..n].copy_from_slice(prefix.as_bytes());
self.start = n;
Ok(self)
}
}
/// Set the suffix.
///
/// If the suffix is longer than the supported length, an error is returned.
pub fn suffix(mut self, suffix: &str) -> Result {
if suffix.len() > SUFFIX_LIM {
Err(Error::InvalidSuffix(suffix.to_string()))
} else {
let n = suffix.len();
self.suffix[..n].copy_from_slice(suffix.as_bytes());
self.suffix_len = n;
Ok(self)
}
}
/// Format the number!
#[deprecated = "consider using Formatter::fmt2 instead"]
pub fn fmt(&mut self, num: f64) -> &str {
self.fmt2(num)
}
/// Format any number implementing [`Numeric`].
pub fn fmt2<N: Numeric>(&mut self, num: N) -> &str {
if num.is_nan() {
"NaN"
} else if num.is_infinite() && num.is_negative() {
"-∞"
} else if num.is_infinite() {
"∞"
} else if num.is_zero() {
"0"
} else {
let num = (self.convert)(num.to_f64());
// scale num to supplied scales
let (scaled, unit) = self.scales.scale(num);
// check if the scaled version hits sn cutoffs
// use original number if it does
let abs = scaled.abs();
// This adjusts the sn cutoff if decimals is low
let sn_sml_cutoff = match self.precision {
Decimals(d) | Significance(d) if d <= 3 => 10f64.powi(d as i32).recip(),
_ => SN_SML_CUTOFF,
};
if abs >= SN_BIG_CUTOFF || abs < sn_sml_cutoff {
// fmt with scientific notation
let (num, exponent) = reduce_to_sn(num);
let precision = match self.precision {
Unspecified => SN_PREC,
x => x,
};
let cursor = self.start + self.write_num(num, precision);
self.strbuf[cursor] = b'e'; // exponent
let cursor = 1 + cursor;
let written = {
let mut buf = itoa::Buffer::new();
let s = buf.format(exponent);
let end = cursor + s.len();
self.strbuf[cursor..end].copy_from_slice(s.as_bytes());
s.len()
};
let cursor = cursor + written;
self.apply_suffix_and_output(cursor)
} else {
// write out the scaled number
let mut cursor = self.start + self.write_num(scaled, self.precision);
if !unit.is_empty() {
let s = cursor;
cursor += unit.len();
self.strbuf[s..cursor].copy_from_slice(unit.as_bytes());
}
self.apply_suffix_and_output(cursor)
}
}
}
/// Writes `num` into the string buffer with the specified `precision`.
/// Returns the number of bytes written.
/// Injects the thousands separator into the integer portion if it exists.
fn write_num(&mut self, num: f64, precision: Precision) -> usize {
let mut tmp = dtoa::Buffer::new();
let s = tmp.format(num);
let tmp = s.as_bytes();
let n = tmp.len();
let mut digits = 0;
let mut written = 0;
let mut in_frac = false;
let mut thou = 2 - (num.abs().log10().trunc() as u8) % 3;
let mut idx = self.start;
for i in 0..n {
let byte = tmp[i]; // obtain byte
self.strbuf[idx] = byte; // write byte
idx += 1;
written += 1; // increment counter
if byte.is_ascii_digit() {
digits += 1;
thou += 1;
}
// look ahead otherwise it would include the decimal always even for 0 precision
if i + 1 < n && tmp[i + 1] == b'.' {
in_frac = true;
if let Decimals(_) = precision {
digits = 0
}
} else if in_frac && byte == b'.' && self.comma {
self.strbuf[idx - 1] = b',';
} else if !in_frac && thou == 3 {
if let Some(sep) = self.thou_sep {
thou = 0;
self.strbuf[idx] = sep;
idx += 1;
written += 1;
}
}
match precision {
Significance(d) | Decimals(d) if in_frac => {
if digits >= d {
break;
}
}
_ => (),
}
}
written
}
fn apply_suffix_and_output(&mut self, mut pos: usize) -> &str {
if !self.suffix.is_empty() {
let s = pos;
pos = s + self.suffix_len;
self.strbuf[s..pos].copy_from_slice(&self.suffix[..self.suffix_len]);
}
std::str::from_utf8(&self.strbuf[..pos]).expect("will be valid string")
}
}
impl Default for Formatter {
fn default() -> Self {
Self::new()
.separator(',')
.unwrap()
.scales(Scales::short())
.precision(Decimals(3))
}
}
impl std::str::FromStr for Formatter {
type Err = parse::ParseError;
fn from_str(s: &str) -> std::result::Result<Self, ParseError> {
parse::parse_formatter(s)
}
}
// Eq and Hash have specialised impls as the _state_ of the buffer should not impact equality
// checking
impl PartialEq for Formatter {
#[allow(clippy::suspicious_operation_groupings)]
fn eq(&self, other: &Self) -> bool {
self.convert == other.convert
&& self.precision == other.precision
&& self.thou_sep == other.thou_sep
// need to use the other suffix len.
&& self.suffix[..self.suffix_len] == other.suffix[..other.suffix_len]
&& self.strbuf[..self.start] == other.strbuf[..other.start]
&& self.scales == other.scales
}
}
impl Eq for Formatter {}
impl Hash for Formatter {
fn hash<H: Hasher>(&self, hasher: &mut H) {
self.strbuf[..self.start].hash(hasher);
self.thou_sep.hash(hasher);
self.precision.hash(hasher);
self.scales.hash(hasher);
self.suffix[..self.suffix_len].hash(hasher);
self.convert.hash(hasher);
}
}
/// Returns `(reduced, exponent)`.
fn reduce_to_sn(n: f64) -> (f64, i32) {
if n == 0.0 || n == -0.0 {
(0.0, 0)
} else {
let abs = n.abs();
let mut e = abs.log10().trunc() as i32;
if abs < 1.0 {
e -= 1;
}
let n = n * 10_f64.powi(-e);
(n, e)
}
}
// ########### ERROR #####################################################################
/// Errors when configuring a [`Formatter`].
#[derive(Debug, PartialEq)]
pub enum Error {
/// Prefix is longer than supported length.
InvalidPrefix(String),
/// Separator is not a byte long.
InvalidSeparator(char),
/// Suffix is longer than supported length.
InvalidSuffix(String),
/// Unit is longer than supported length.
InvalidUnit(&'static str),
/// Scaling base is 0.
ZeroBase,
}
impl error::Error for Error {}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use Error::*;
match self {
InvalidPrefix(prefix) => write!(
f,
"Invalid prefix `{}`. Prefix is longer than the supported {} bytes",
prefix, PREFIX_LIM
),
InvalidSeparator(sep) => write!(
f,
"Invalid separator `{}`. Separator can only be one byte long",
sep
),
InvalidSuffix(suffix) => write!(
f,
"Invalid suffix `{}`. Suffix is longer than the supported {} bytes",
suffix, SUFFIX_LIM
),
InvalidUnit(unit) => write!(
f,
"Invalid unit `{}`. Unit is longer than the supported {} bytes",
unit, UNITS_LIM
),
ZeroBase => write!(f, "Invalid scale base, base must be greater than zero"),
}
}
}
// ########### PRECISION #################################################################
/// Number precision.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
#[allow(missing_docs)]
pub enum Precision {
Significance(u8),
Decimals(u8),
Unspecified,
}
// ########### SCALES ####################################################################
/// Scale numbers.
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub struct Scales {
base: u16,
units: Vec<&'static str>,
}
impl Scales {
/// Create a new scale.
///
/// If a unit is longer than the supported length, an error will be returned.
pub fn new(base: u16, units: Vec<&'static str>) -> std::result::Result<Self, Error> {
if base == 0 {
return Err(Error::ZeroBase);
}
for unit in &units {
if unit.len() > UNITS_LIM {
return Err(Error::InvalidUnit(unit));
}
}
Ok(Self { base, units })
}
/// Create a scale which is dummy and does not scale.
pub fn none() -> Self {
Self {
base: std::u16::MAX,
units: Vec::new(),
}
}
/// The default scaling method.
///
/// Based on a [short scale](https://en.wikipedia.org/wiki/Long_and_short_scales)
/// the scaling uses base `1000`. The units are meant to be used to denote _magnitude_ of the
/// number, so the empty base is empty.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::default()
/// .scales(Scales::short())
/// .precision(Precision::Decimals(1));
/// assert_eq!(f.fmt(12.34e0), "12.3");
/// assert_eq!(f.fmt(12.34e3), "12.3 K");
/// assert_eq!(f.fmt(12.34e6), "12.3 M");
/// assert_eq!(f.fmt(12.34e9), "12.3 B");
/// assert_eq!(f.fmt(12.34e12), "12.3 T");
/// assert_eq!(f.fmt(12.34e15), "12.3 P");
/// assert_eq!(f.fmt(12.34e18), "12.3 E");
/// assert_eq!(f.fmt(12.34e21), "12.3 Z");
/// assert_eq!(f.fmt(12.34e24), "12.3 Y");
/// assert_eq!(f.fmt(12.34e27), "12,339.9 Y");
/// ```
pub fn short() -> Self {
Scales {
base: 1000,
units: vec!["", " K", " M", " B", " T", " P", " E", " Z", " Y"],
}
}
/// Create a metric SI scale.
///
/// The [SI scale](https://en.wikipedia.org/wiki/International_System_of_Units#Prefixes)
/// steps with base `1000`. It is intended for use as a units prefix, so the empty base
/// contains a space.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::new().scales(Scales::metric());
/// assert_eq!(f.fmt(123456.0), "123.456 k");
/// assert_eq!(f.fmt(123456789.0), "123.456789 M");
/// ```
pub fn metric() -> Self {
Scales {
base: 1000,
units: vec![" ", " k", " M", " G", " T", " P", " E", " Z", " Y"],
}
}
/// Create a binary scale.
///
/// The [binary scale](https://en.wikipedia.org/wiki/Binary_prefix)
/// steps with base `1024`. It is intended for use as a units prefix, so the empty base
/// contains a space.
///
/// # Example
/// ```rust
/// # use numfmt::*;
/// let mut f = Formatter::new().scales(Scales::binary());
/// assert_eq!(f.fmt(1024.0 * 1024.0), "1.0 Mi");
/// assert_eq!(f.fmt(3.14 * 1024.0 * 1024.0), "3.14 Mi");
/// ```
pub fn binary() -> Self {
Scales {
base: 1024,
units: vec![" ", " ki", " Mi", " Gi", " Ti", " Pi", " Ei", " Zi", " Yi"],
}
}
/// The set base.
pub fn base(&self) -> u16 {
self.base
}
/// The set units.
pub fn units(&self) -> &[&'static str] {
self.units.as_slice()
}
/// Extract the `(base, units)`.
pub fn into_inner(self) -> (u16, Vec<&'static str>) {
(self.base, self.units)
}
/// Scale a number and return the scaled number with the unit.
pub fn scale(&self, mut num: f64) -> (f64, &'static str) {
let base = self.base as f64;
let mut u = "";
let mut n2 = num;
// use n2 as a delayed write to not downsize num on last entry numbers
for unit in &self.units {
num = n2;
u = unit;
if num.abs() >= base {
n2 = num / base;
} else {
break;
}
}
(num, u)
}
}
#[cfg(test)]
#[allow(deprecated)]
mod tests {
use super::*;
use std::f64::*;
#[test]
fn nan_and_inf() {
let mut f = Formatter::new();
assert_eq!(f.fmt(INFINITY), "∞");
assert_eq!(f.fmt(NEG_INFINITY), "-∞");
assert_eq!(f.fmt(NAN), "NaN");
}
#[test]
fn invalid_sep() {
let f = Formatter::new().separator('ß');
assert_eq!(f, Err(Error::InvalidSeparator('ß')));
}
#[test]
fn no_sep() {
let mut f = Formatter::default();
assert_eq!(f.thou_sep, Some(b','));
f = f.separator(None).unwrap();
assert_eq!(f.thou_sep, None);
}
#[test]
fn sn_reduction() {
let f = reduce_to_sn;
assert_eq!(f(0.0), (0.0, 0));
assert_eq!(f(1.23), (1.23, 0));
assert_eq!(f(12.34), (1.234, 1));
assert_eq!(f(1234.567), (1.234567, 3));
assert_eq!(f(1234.567e13), (1.234567, 16));
assert_eq!(f(0.0123), (1.23, -2));
assert_eq!(f(0.123), (1.23, -1));
assert_eq!(f(0.0012345), (1.2345, -3));
assert_eq!(f(0.00123e-12), (1.23, -15));
assert_eq!(f(0.00123e12), (1.23, 9));
assert_eq!(f(1234e-12), (1.234, -9));
// negatives
assert_eq!(f(-0.0), (-0.0, 0));
assert_eq!(f(-1.23), (-1.23, 0));
assert_eq!(f(-12.34), (-1.234, 1));
assert_eq!(f(-1234.567), (-1.234567, 3));
assert_eq!(f(-1234.567e13), (-1.234567, 16));
assert_eq!(f(-0.0123), (-1.23, -2));
assert_eq!(f(-0.123), (-1.23, -1));
assert_eq!(f(-0.0012345), (-1.2345, -3));
assert_eq!(f(-0.00123e-12), (-1.23, -15));
assert_eq!(f(-0.00123e12), (-1.23, 9));
assert_eq!(f(-1234e-12), (-1.234, -9));
}
#[test]
fn sn_tests() {
let mut f = Formatter::new().scales(Scales::none());
assert_eq!(f.fmt(123.4567e43), "1.234567e45");
assert_eq!(f.fmt(123.4567e-43), "1.234567e-41");
assert_eq!(f.fmt(-123.4567e-43), "-1.234567e-41");
assert_eq!(f.fmt(-123.4567e43), "-1.234567e45");
assert_eq!(f.fmt(0.000000007894), "7.893999e-9");
assert_eq!(f.fmt(123454023590854.0), "1.234540e14");
assert_eq!(f.fmt(123.456789e99), "1.234567e101");
}
#[test]
fn separator_tests() {
// do not use a scaler for these tests
let mut f = Formatter::new()
.separator(',')
.unwrap()
.scales(Scales::none());
assert_eq!(f.fmt(123456789_f64), "123,456,789.0");
assert_eq!(f.fmt(12345678_f64), "12,345,678.0");
assert_eq!(f.fmt(1234567_f64), "1,234,567.0");
assert_eq!(f.fmt(123456_f64), "123,456.0");
assert_eq!(f.fmt(1234_f64), "1,234.0");
assert_eq!(f.fmt(123_f64), "123.0");
assert_eq!(f.fmt(0.0), "0");
assert_eq!(f.fmt(0.1234), "0.1234");
assert_eq!(f.fmt(-123.0), "-123.0");
assert_eq!(f.fmt(-1234.0), "-1,234.0");
assert_eq!(f.fmt(-1234567.0), "-1,234,567.0");
assert_eq!(f.fmt(-123456789101.0), "-123,456,789,101.0");
}
#[test]
fn test_scaling() {
let s = Scales::short();
assert_eq!(s.scale(123.0), (123.0, ""));
assert_eq!(s.scale(-123.0), (-123.0, ""));
assert_eq!(s.scale(1234.0), (1.234, " K"));
assert_eq!(s.scale(-1234.0), (-1.234, " K"));
assert_eq!(s.scale(-123456.0), (-123.456, " K"));
assert_eq!(s.scale(-12345678.0), (-12.345678, " M"));
let s = Scales::binary();
assert_eq!(s.scale(123.0), (123.0, " "));
assert_eq!(s.scale(1024.0 * 1024.0), (1.0, " Mi"));
let s = Scales::new(2, vec!["x1", "x2", "x4", "x8", "x16"]).unwrap();
assert_eq!(s.scale(20.0), (1.25, "x16"));
assert_eq!(s.scale(64.0), (4.0, "x16")); // check it uses maximum if over
let s = Scales::none();
assert_eq!(s.scale(-1_000_000f64), (-1_000_000f64, ""));
}
#[test]
fn scaling_inside_fmtr() {
let mut f = Formatter::default().precision(Unspecified);
assert_eq!(f.fmt(12345678.0), "12.345678 M");
assert_eq!(f.fmt(-12345.0), "-12.345 K");
assert_eq!(f.fmt(-123.0), "-123.0");
assert_eq!(f.fmt(-0.00123), "-0.00123");
}
#[test]
fn prefix() {
let mut f = Formatter::new()
.separator(',')
.unwrap()
.prefix("$")
.unwrap();
assert_eq!(f.fmt(123456.0), "$123,456.0");
assert_eq!(f.fmt(0.01234), "$0.01234");
}
#[test]
fn suffix() {
let mut f = Formatter::new()
.separator(',')
.unwrap()
.suffix("%")
.unwrap();
assert_eq!(f.fmt(123456.0), "123,456.0%");
assert_eq!(f.fmt(0.1234), "0.1234%");
}
#[test]
fn buf_lim_testing() {
let mut f = Formatter::new()
.build_scales(1, vec!["_ten chars"])
.unwrap()
.separator(',')
.unwrap()
.prefix("__ chars _")
.unwrap()
.suffix("a suffix !")
.unwrap();
assert_eq!(
f.fmt(-123456789.0123456789),
"__ chars _-123,456,789.01234567_ten charsa suffix !"
);
}
#[test]
fn decimals_test() {
let mut f = Formatter::new().precision(Decimals(6));
assert_eq!(f.fmt(1234.5), "1234.5");
assert_eq!(f.fmt(123.456789111), "123.456789");
f = Formatter::default()
.scales(Scales::none())
.precision(Decimals(0));
assert_eq!(f.fmt(1123.456), "1,123");
assert_eq!(f.fmt(12345678.90123), "12,345,678");
f = Formatter::default().precision(Decimals(1));
assert_eq!(f.fmt(0.001234), "1.2e-3");
f = Formatter::default().precision(Significance(1));
assert_eq!(f.fmt(0.001234), "1e-3");
}
#[test]
fn significance_test() {
let mut f = Formatter::default().precision(Significance(2));
assert_eq!(f.fmt(1234.0), "1.2 K");
assert_eq!(f.fmt(1.02), "1.0");
}
#[test]
fn currency_test() {
let mut f = Formatter::currency("$").unwrap();
assert_eq!(f.fmt(12345.6789), "$12,345.67");
assert_eq!(f.fmt(1234_f64), "$1,234.0");
let f = Formatter::currency("invalid length prefix");
assert_eq!(
f,
Err(Error::InvalidPrefix("invalid length prefix".to_string()))
);
}
#[test]
fn percentage_tests() {
let mut f = Formatter::percentage();
assert_eq!(f.fmt(0.678912), "67.8912%");
assert_eq!(f.fmt(1.23), "123.0%");
assert_eq!(f.fmt(1.2), "120.0%");
}
#[test]
fn failures() {
use Error::*;
let invalid = "invalid length prefix";
let f = Formatter::new().prefix(invalid);
assert_eq!(f, Err(InvalidPrefix(invalid.to_string())));
assert_eq!(
&f.unwrap_err().to_string(),
"Invalid prefix `invalid length prefix`. Prefix is longer than the supported 12 bytes"
);
let f = Formatter::new().suffix(invalid);
assert_eq!(f, Err(InvalidSuffix(invalid.to_string())));
assert_eq!(
&f.unwrap_err().to_string(),
"Invalid suffix `invalid length prefix`. Suffix is longer than the supported 12 bytes"
);
let f = Formatter::new().build_scales(1000, vec![invalid]);
assert_eq!(f, Err(InvalidUnit(invalid)));
assert_eq!(
&f.unwrap_err().to_string(),
"Invalid unit `invalid length prefix`. Unit is longer than the supported 12 bytes"
);
let f = Formatter::new().build_scales(0, vec![""]);
assert_eq!(f, Err(ZeroBase));
assert_eq!(
&f.unwrap_err().to_string(),
"Invalid scale base, base must be greater than zero"
);
let f = Formatter::new().separator('😃');
assert_eq!(f, Err(InvalidSeparator('😃')));
assert_eq!(
&f.unwrap_err().to_string(),
"Invalid separator `😃`. Separator can only be one byte long"
);
}
#[test]
fn getters() {
let s = Scales::new(12, vec!["", "one"]).unwrap();
assert_eq!(s.base(), 12);
assert_eq!(s.units(), &["", "one"]);
let (base, units) = s.into_inner();
assert_eq!(base, 12);
assert_eq!(units, &["", "one"]);
}
#[test]
fn eq_and_hashing() {
let f1 = Formatter::default()
.prefix("Hi")
.unwrap()
.suffix("Bye")
.unwrap();
let f2 = Formatter::new()
.separator(',')
.unwrap()
.prefix("Hi")
.unwrap()
.suffix("Bye")
.unwrap()
.scales(Scales::short())
.precision(Decimals(3));
let f3 = Formatter::new();
assert_eq!(f1, f2);
assert_ne!(f1, f3);
assert_ne!(f2, f3);
let mut h = std::collections::hash_map::DefaultHasher::new();
f1.hash(&mut h);
let h1 = h.finish();
let mut h = std::collections::hash_map::DefaultHasher::new();
f2.hash(&mut h);
let h2 = h.finish();
let mut h = std::collections::hash_map::DefaultHasher::new();
f3.hash(&mut h);
let h3 = h.finish();
assert_eq!(h1, h2);
assert_ne!(h1, h3);
assert_ne!(h2, h3);
}
#[test]
fn panicking_number() {
let mut fmtr = Formatter::default()
.precision(Precision::Unspecified)
.scales(Scales::none());
let s = fmtr.fmt(0.00316114);
assert_eq!(s, "0.0031611399999999999");
let s = fmtr.fmt(2_f64.powi(67));
assert_eq!(s, "1.475739e20");
}
#[test]
fn panicking_number2() {
let mut f = Formatter::default();
let s = f.fmt(-0.0025053862329988824);
assert_eq!(s, "-0.002");
}
#[test]
fn eu_testing() {
let mut f: Formatter = "[,2]".parse().unwrap();
let s = f.fmt(1.23);
assert_eq!(s, "1,23");
let mut f: Formatter = "[n/.]".parse().unwrap();
let s = f.fmt(12345.0);
assert_eq!(s, "12.345,0");
}
}